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particle density. This problem can hardly be solved effi-
ciently by direct simulation methods in such cases, whereA stochastic weighted particle method is applied to a model non-

linear kinetic equation. A detailed study of various numerical ap- the changes of the particle density are of several orders of
proximations is presented. The main effect achieved by the new magnitude. We refer to [1; 3, Chap. 10; 6; 7] concerning
method is an artificial increase of the relative number of simulation particle schemes for the Boltzmann equation.
particles with prescribed velocities. Q 1996 Academic Press, Inc.

In simulation procedures for the spatially inhomoge-
neous Boltzmann equation (cf., e.g., [8]), a time discreti-
zation1. INTRODUCTION

tk 5 k Dt, k 5 0, 1, ..., Dt . 0,In this paper we continue the study of a new particle
method for nonlinear kinetic equations introduced in [8].

is used in order to split the simulation of the free flow ofThis method is based on a generalized procedure of model-
the particles and the simulation of their collisions. Thisling collisions between particles providing some freedom
means that on a small time interval of length Dt, at a firstin the random choice of the collision partners and in the
step, the free flow is simulated, disregarding the possibleweight transfer mechanism (cf. [5, 4, 9].)
collisions. Then, at a second step, the collisions are simu-We consider the equation
lated, neglecting the free flow. Now, if one wishes to in-
crease artificially the number of simulation particles in a

t
f(t, u) 5 E1

0
[ f(t, u 2 v) f(t, v) 2 f(t, u) f(t, v)] dv, (1.1) certain region of the physical space, then it will be neces-

sary to generate particles with velocities from a prescribed
subset of the velocity space during the collision simula-where t . 0, 0 # u , 1, with the initial condition
tion step.

The main objective of this paper is to show that this
f(0, u) 5 f0(u). (1.2) goal, i.e., an artificial increase of the number of particles

with prescribed velocities, can be achieved by the new
The solution f(t, u) is assumed to be periodic in u, i.e., method. We also study the related effect of variance reduc-

tion, the influence of various approximation procedures
f(t, u) 5 f(t, 1 1 u), t $ 0, u [ R. for the initial distribution, and the effect of different time

counting mechanisms on the simulation results.
Equation (1.1) is a model kinetic equation, which is non- The paper is organized as follows. In Section 2, we
linear but has a very simple collision mechanism. The sim- summarize the main analytical properties of the model
plicity of this equation allows us to check all steps of the equation and give an appropriate exact solution for the
numerical algorithm very carefully in order to give recom- numerical tests. In Section 3, we describe the stochastic
mendations for more complicated kinetic equations, like weighted particle method. In Section 4, we illustrate the
the Boltzmann equation (cf. [3]). In [9], where also the various numerical effects mentioned above. Finally, we
convergence of the method was investigated, we used draw some conclusions.
Eq. (1.1) to illustrate the reduction of the statistical fluctu-
ations. 2. ANALYTICAL PROPERTIES OF THE EQUATION

A challenging problem related to the Boltzmann equa-
tion is the accurate calculation of macroscopic quantities, The model kinetic equation (1.1) was introduced in [2],

where the existence of the solution, as well as its stabilitylike mean velocity or temperature, in regions with a small
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and the convergence of a class of difference schemes was Mk(t) 5 E1

0
u kf(t, u) du, k 5 0, 1, ..., (2.5)

studied. In particular, it was proved that the solution of
the initial value problem (1.1), (1.2) exists in L2([0, 1)) for

can be computed explicitly. One obtainst $ 0 and any initial function f0 [ L2([0, 1)).
The solution can be represented in terms of Fourier

series Mk(t) 5 2 1
4(1 2 e 2t )ck 1 16e 2tsk

1 2 2e 2t 1 17e 4t , k 5 0, 1, ..., (2.6)

f(t, u) 5 O
k[Z

%ck(0)
ck(0) 2 (ck(0) 2 %)e %t vk(u), where

ck 5 E1

0
u k cos(2fu) du, sk 5 E1

0
u k sin(2fu) du. (2.7)where

The numbers ck and sk are computed via the recursive for-vk(u) 5 e i2fku (2.1)
mulae

are the Fourier functions and i denotes the imaginary unit,
c0 5 s0 5 0, (2.8)i.e., i 2 5 21. The symbols ck(0) are the corresponding

Fourier coefficents of the initial function f0 , i.e.,
ck 5 2

k
2f

sk21 , sk 5 2
1

2f
1

k
2f

ck21 , k 5 1, 2, .... (2.9)

f0(u) 5 O
k[Z

ck(0)vk(u).
Furthermore, we introduce the function

The value % is equal to the ‘‘mass’’ of the system and
F«(t) 5 E1

12«
f(t, u) du, « . 0, (2.10)remains conserved by Eq. (1.1):

which takes the explicit form% 5 E1

0
f(t, u) du 5 E1

0
f0(u) du. (2.2)

F«(t) 5 2« 1
2((1 2 e2t ) sin(2f«) 2 4e2t(1 2 cos(2f«)))

f(1 2 2e2t 1 17e4t )
.The L2-norm of the solution f(t, u) is estimated as

(2.11)
i f(t, u)i2

L2([0,1)) 5 O
k[Z

uck(t)u2 # O
k[Z

uck(0)u2 5 i f0(u)i2
L2([0,1)) .

3. THE METHOD

The method consists in modelling trajectories of a sto-For some special f0 , it is possible to give the analytical
chastic particle system of the formsolutions of the problem (1.1) in terms of elementary func-

tions. One of these solutions is obtained for the initial
Z(t) 5 h(wi(t), gi(t)), i 5 1, ..., m(t)j, t $ 0. (3.1)function

Each particle has a state (‘‘velocity’’) wi(t) from the inter-f0(u) 5 2 1 sin(2fu), (2.3)
val [0, 1), and a weight gi(t) [ [0, 1]. The variable m(t)
denotes the number of particles in the system, andwhich can be written as

m(0) 5 n. (3.2)
f0(u) 5 2

1
2i

v21(u) 1 2v0(u) 1
1
2i

v1(u),
The justification of the method is given in [9] by showing
convergence (as n R y) of the corresponding empirical

where vk(u) are defined in (2.1). The corresponding ana- measures,
lytical solution is

e(t, dw) 5 Om(t)

i51
gi(t) dwi(t)(dw), (3.3)

f(t, u) 5 2 1
4(1 2 e2t ) cos(2fu) 1 16e 2t sin(2fu)

1 2 2e 2t 1 17e 4t . (2.4)

where d denotes the Dirac measure, to the measures
f(t, w) dw, where f is the solution of Eq. (1.1).The moments of the solution (2.4)
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3.1. Approximation of the Initial Value 3.2. Time Evolution

The evolution of the system (3.1) on a time intervalThe first step in the construction of the particle system
(3.1) is the approximation of the initial function f0 given [0, Dt] is determined by discrete events, in each of which

two particles are involved. Letin (2.3) by a system of particles

Z(0) 5 h(wi , gi ), i 5 1, ..., nj. Z(t) 5 ((w1 , g1 ), ..., (wm , gm )). (3.7)

A natural choice of the weights at the beginning is Then the principal steps of the procedure of modelling
a transition

gi 5
%

n
, i 5 1, ..., n, (3.4)

Z(t) R Z(t 1 t)

where % is defined in (2.2). are:
The problem of generating velocities wi reduces to the

1. Increase the time counter t :5 t 1 t ;numerical solution of the equations
2. Choose the indices i and j of the collision partners;

3. Decide whether the collision is fictitious, i.e.,1
%
Ewi

0
f0(u) du 5 ri , i 5 1, ..., n, (3.5)

Z(t 1 t) 5 Z(t);
where ri are pseudo-random numbers. One can also choose
the elements of a low discrepancy sequence for ri (cf. [7]). 4. If the collision is real, then perform the transfor-
According to (2.3), Eq. (3.5) takes the form mation

wi 2
1

4f
cos 2fwi 5 ri 2

1
4f

, i 5 1, ..., n,

and can be solved by the Newton method Z(t 1 t)k 55
(wk , gk ), if k # m, k ? i, j,

(w̃i , G), if k 5 i,

(w̃j , G), if k 5 j,

(wi , gi 2 G), if k 5 m 1 1,

(wj , gj 2 G), if k 5 m 1 2;

(3.8)

w k11
i 5

2f sin(2fw k
i ) 1 cos(2fw k

i ) 1 4fri 2 1
2f(2 1 sin(2fw k

i )
,

k 5 0, 1, ....
5. Decide whether some particles should be removed

from the system because of their zero weights and defineA more general approach is first to divide the interval
herewith the new number of particles m(t 1 t).[0, 1) into nI parts using the nodes vj , j 5 1, ..., nI 1 1,

defined from the equations The values w̃i and w̃j of the postcollision velocities are
defined by the following collision transformation of veloc-
ities

v1 5 0, Evj11

vj

f0(u) du 5
%

nI
, j 5 1, ..., nI ; vnI11 5 1.

w̃i 5 w̃j 5 wi 1 wj 2 [wi 1 wj ], (3.9)
In each subinterval [vj , vj 11 ], j 5 1, ..., nI , we put n/nI

particles according to the formulas where [x] denotes the integer part of the value x.
The main parameter of the method is the weight transfer

function G. This function should satisfy the inequalitynI

%
Ewj, i

vj

f0(u) du 5 rj, i , j 5 1, ..., nI ; i 5 1, ..., n/nI , (3.6)

0 # G # min(gi , gj )
where rj, i are pseudo-random numbers. As in (3.5) it is
also possible to use a low discrepancy sequence instead of in order to keep the weights nonnegative.

We now describe a special choice of G, which is designedpseudo-random numbers.
Another idea, which was used in [9], is to introduce to increase the relative amount of particles in a special

(small) region A« of the velocity space. This method isparticles having different weights already for the approxi-
mation of f0 . also capable of handling the problem of computing small
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probabilities, i.e., of evaluating the function F«(t) defined
pi 5

(m 2 2)gi 1 % 2 (m 2 1)gmin

(m 2 1)(2% 2 mgmin )
. (3.15)in (2.10). In this case, an appropriate choice is

Then, given the value of i, the index j is chosen accordingA« 5 [1 2 «, 1), « [ [0, 1]. (3.10)
to the probabilities

The basic ideas are the following. First, if a particle
reaches the interesting region A« then a part of it will pj 5

gi 1 gj 2 gmin

(m 2 2)gi 1 % 2 (m 2 1)gmin
. (3.16)

always remain there, because in this case we will choose
the weight transfer function

The choice of the indices i and j can be performed by
von Neumann’s acceptance–rejection method.

G 5
1

1 1 k1
min(gi , gj ), k1 . 0. The collision is fictitious with probability

Second, with the help of another parameter k2 we will p 5 1 2
1 1 c

1 1 max(k1 , k2 )
max(gi , gj )

(gi 1 gj 2 gmin )
, (3.17)

prefer collisions with postcollision velocities from the re-
gion A« in order to ‘‘encourage’’ the particles to enter

where c is defined in (3.12).this region.
The number of particles increases by two in the caseRigorously, the weight transfer function is defined as

c . 0. In the case c 5 0, it does not change, if the weights
gi and gj are equal, or increases by one, otherwise.

G 5
1

1 1 c
min(gi , gj ), (3.11)

3.3. Comments

The simplest variant of the method is obtained in thewhere (cf. (3.7), (3.10), (3.9))
case k1 5 k2 5 0, where we have (cf. (3.12), (3.11), (3.4),
(3.13), (3.15), (3.16))

c 5 5
k1, if wi [ A« or wj [ A« ,

k2 , if wi , wj Ó A« , w̃i , w̃j [ A« ,

0, otherwise.

(3.12) G 5 %/n, t 5
2

%(n 2 1)
, pi 5

1
n

, pj 5
1

n 2 1
, p 5 0.

(3.18)

This is, in fact, the adaptation of Bird’s direct simulationWe consider two variants of defining the time step t.
Monte Carlo (DSMC) method [1] to Eq. (1.1).On the one hand, the time step is determined by the deter-

There are two main effects of a nonzero function c.ministic term
First the collision partners wi and wj remain in the sys-

tem, since only a part of their weights is transferred (cf.
ŝ 5

2
[1 1 max(k1 , k2 )](m 2 1)(2% 2 mgmin )

. (3.13) (3.8), (3.11)). If, in particular, k1 . 0, then all particles
with velocities from A« will remain in the system losing a
part of their weights during each collision (cf. (3.12)).

The value gmin denotes the minimal weight of all particles The second effect is on the distribution of the collision
in the system Z(t) and should be controlled and, if neces- partners. Note that the probabilities (3.15), (3.16) do not
sary, adapted after each collision. The value % is defined depend on c. Thus, the distribution of the partners in real
in (2.2). collisions is determined by (3.17). If c is large, i.e., close

Alternatively, the time step is computed as a random to its maximum value, max(k1 , k2 ), then the collision is
variable s having an exponential distribution with the fictitious with small probability. Thus, a real collision
parameter ŝ 21, i.e., between partners with large c does occur more likely. If,

in particular, k2 . k1 , then collision partners wi , wj Ó A«

s 5 2ŝ log(r), (3.14) with w̃i , w̃j [ A« will be favored in performing real colli-
sions (cf. (3.12)).

The new parameters k1 and k2 allow us to modify thewhere r is a pseudo-random number. Note that the mathe-
matical expectation of the random variable s is just ŝ. In evolution of the particle system according to special nu-

merical purposes. Thus, the method does not simply trythe limit of large m, both alternatives are equivalent.
The indices i and j are generated as follows. First, the to mimic the physical process. In this sense, it is a ‘‘non-

DSMC’’ method.index i is chosen according to the probabilities
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TABLE I

k1 5 1, k2 5 1

n N e« p 106 c« p 106 em1 p 106 cm1 p 106 minc mrel

16 640000 794 197/146 4040 555/652 1.7 3.63
32 320000 450 196/141 2137 554/630 1.8 3.52
64 160000 187 197/137 941 555/611 2.0 3.43

128 80000 107 197/134 493 553/595 2.1 3.36
256 40000 87 197/133 482 555/583 2.2 3.32
512 20000 145 197/131 443 558/579 2.2 3.31

1024 10000 130 195/131 217 553/578 2.2 3.28
10240 1000 55 198/130 410 547/580 2.2 3.28

102400 100 105 201/145 496 561/624 2.2 3.28

4. NUMERICAL EXPERIMENTS 4.1. Some Statistical Notions

First we introduce some definitions and notations thatIn this section we present the results of numerical simula-
are important for the understanding of stochastic numeri-tions according to the method described in the previous
cal schemes for kinetic equations.section. The method depends on the parameters k1 , k2 , «

The functionals to be calculated (4.2), (4.3) are of thevia the function c (cf. (3.12)) and on the parameter n (cf.
form(3.2)). We choose « 5 0.01 so that the specified region

takes the form (cf. (3.10))
F(t) 5 E1

0
w(w) f(t, w) dw. (4.4)

A« 5 A0.01 5 [0.99, 1.). (4.1)

We study the influence of the remaining parameters on According to (3.3), a functional (4.4) is approximated by
the behavior of the particle system on the time interval the random variable
[0, 1].

The main effect to be studied is the artificial increase of
the number of particles in the region A« caused by the j(n)(t) 5E1

0
w(w)e(n)(t, dw) 5 Om(n)(t)

i51
g (n)

i (t)w(w (n)
i (t)). (4.5)

control parameters k1 and k2 . However, it is important to
clarify how this effect is related to other statistical proper-

In order to estimate and to reduce the random fluctua-ties of the system. To this end, we calculate the first moment
tions of the estimator (4.5), a number N of independentof the solution of Eq. (1.1) (cf. (2.5)–(2.9))
ensembles of particles is generated. The corresponding
values of the random variable are denoted byM1(t) 5 E1

0
uf(t, u) du (4.2)

j
(n)
1 (t), ..., j

(n)
N (t).and the functional (cf. (2.10), (2.11))

F«(t) 5 E1

0.99
f(t, u) du. (4.3) The empirical mean value of the random variable (4.5),

TABLE II

k1 5 1, k2 5 5

n N e« p 106 c« p 106 em1 p 106 cm1 p 106 minc mrel

16 640000 1177 196/97 3974 555/635 2.9 7.79
32 320000 604 197/91 1993 555/610 3.2 7.58
64 160000 249 197/87 1235 554/591 3.4 7.47

128 80000 178 197/84 428 553/580 3.6 7.41
256 40000 76 197/83 598 552/574 3.7 7.39
512 20000 81 196/83 299 550/565 3.7 7.37

1024 10000 44 197/82 338 553/562 3.7 7.38
10240 1000 76 197/82 449 560/573 3.7 7.36

102400 100 162 230/91 307 605/590 3.7 7.36
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TABLE III

k1 5 1, k2 5 10

n N e« p 106 c« p 106 em1 p 106 cm1 p 106 minc mrel

16 640000 1272 196/84 4585 555/629 4.9 11.9
32 320000 586 197/77 2060 556/607 5.3 11.5
64 160000 298 197/72 961 553/590 5.6 11.4

128 80000 167 197/69 816 556/579 5.8 11.4
256 40000 95 196/68 311 554/571 5.9 11.4
512 20000 82 197/67 289 553/566 5.9 11.4

1024 10000 51 196/68 571 561/571 5.9 11.4
10240 1000 38 199/67 473 554/540 6.0 11.4

102400 100 57 196/59 155 545/519 6.0 11.4

e (n,N)
stat (t) 5 h(n,N)

1 (t) 2 Ej (n)(t).
h(n,N)

1 (t) 5
1
N ON

j51
j

(n)
j (t), (4.6)

A confidence interval for the expectation of the random
variable j (n)(t) is obtained asis then used as an approximation to the functional (4.4).

The error of this approximation is

Ip 5 Fh(n,N)
1 (t) 2 lp !Var j (n)(t)

N
, h(n,N)

1 (t)

(4.9)
e(n,N)(t) 5 uh(n,N)

1 (t) 2 F(t)u (4.7)

containing the following two components: 1 lp !Var j (n)(t)
N G ,

The systematic error is the difference between the math-
ematical expectation of the random variable (4.5) and the

whereexact value of the functional, i.e.,

Var j (n)(t) :5 E[j (n)(t) 2 Ej (n)(t)]2 5 E[j (n)(t)]2

(4.10)e (n)
sys(t) 5 Ej (n)(t) 2 F(t). (4.8)

2 [Ej (n)(t)]2

The statistical error is the difference between the empiri-
cal mean value and the expected value of the random is the variance of the random variable (4.5) and p [

(0, 1) is the confidence level. It means thatvariable, i.e.,

FIG. 1. Number of particles m(t).
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FIG. 2. Percentage of particles mrel(t) in the region A« .

results is given in Tables I–III, where the following nota-
ProbhEj (n)(t) Ó Ip j 5 Prob Hue (n,N)

stat (t)u tions are used.
The supremum over the time interval [0, 1] of the error

(4.7) is denoted by em1 and e« for the functionals (4.2)
$ lp !Var j (n)(t)

N J 1 2 p. and (4.3), respectively. The statistical error bound (4.11)
is displayed both at the beginning and the end of the time
interval [0, 1], and is denoted by cm1 and c« for the func-Thus, the value
tionals (4.2) and (4.3), respectively.

Finally, the increase factor for the number of particles
in the systemc(n,N)(t) 5 lp !Var j (n)(t)

N
(4.11)

minc(t) 5
m(t)
m(0)

5
m(t)

n
(4.12)is a probabilistic upper bound for the statistical error.

In the calculations, we use a confidence level of p 5
and the percentage of particles in the region A«0.999 and lp 5 3.2. The variance is approximated by the

corresponding empirical value (cf. (4.10)); i.e.,

mrel(t) 5
om(t)

i51 ¶A«
(wi(t))

m(t)
(4.13)Var j (n)(t) p h(n,N)

2 (t) 2 [h(n,N)
1 (t)]2,

at t 5 1 are denoted by minc and mrel , respectively.where

TABLE IVh(n,N)
2 (t) 5

1
N ON

j51
[j

(n)
j (t)]2,

n N edet p 106 cdet p 106 esto p 106 csto p 106

is the empirical second moment of the random variable 4 2560000 72878 714 17003 718
8 1280000 28754 712 7873 710(4.5).

16 640000 15298 706 3902 705
32 320000 5256 702 2269 7034.2. Influence of the Control Parameters
64 160000 2354 702 498 701

128 80000 1692 700 1085 703We perform the calculations for different combinations
256 40000 755 702 337 702of the parameters k1 and k2 . The initial distribution f0(v)
512 20000 505 700 359 696

is approximated according to (3.5), and the random time 1024 10000 347 711 308 706
counter (3.14) is used. A rather complete set of numerical
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FIG. 3. Method with k1 5 1, k2 5 10 and n 5 16, 64, 256, 1024 (from above).

The numerical material contained in Tables I–III allows k1 5 1, k2 5 5 (dashed-dotted), and k1 5 1, k2 5 10 (dotted).
For comparison, the corresponding values for the standardus to study the influence of the parameters k1 , k2 , and

n on three characteristic properties of the method—the method (k1 5 0, k2 5 0) are displayed by a solid line.
From the knowledge of the behavior of the error (4.7),number of particles in the prescribed region A« , the sys-

tematic error (4.8), and the bound for the statistical er- it is possible to draw some conclusions about the behavior
of the systematic error (4.8), while the error (4.7) is largeror (4.11).

The increase factor for the number of particles in the compared with the statistical error bound (4.11). Thus, it
can be seen from the numerical results in Tables I–III thatsystem (4.12) as well as the percentage of particles in the

region A« (4.13) become independent of n for sufficiently the systematic error behaves roughly like O(n21).
Figure 3 shows the time-dependent behavior of certainlarge n. Figures 1 and 2 show the time dependent behavior

of m(t) and mrel(t) for n 5 1024 and N 5 10,000. The relevant quantities for the method with k1 5 1, k2 5 10.
The left-hand side of the figure corresponds to the firstdifferent lines correspond to k1 5 1, k2 5 1 (dashed),
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FIG. 4. Dependence on n of the error for different time counters.

moment (4.2), while the right-hand side corresponds to the The behavior of the statistical error bound (4.11) is de-
termined by the variance (4.10) of the random variablefunctional (4.3). The exact values of the functionals as

functions of time are represented by the dashed lines. The (4.5). Concerning the behavior of the variance there are
two main observations based on the numerical data ofcomputed empirical mean values (4.6) are displayed by

solid lines, and the corresponding confidence intervals Tables I–III.
First, the statistical error bound c remains constant when(cf. (4.9)) by dotted lines.

Note that the exact values to be approximated are the product nN is fixed. According to (4.11), one obtains
F«(1) 5 0.019680 and M1(1) 5 0.979422. Consequently, an Var j (n)(t)

N
P const.error 0.000197 is of the order of 1% for the functional F« ,

and an error 0.000555 is of the order of 0.05% for the
first moment. This indicates a behavior like

FIG. 5. Error for the stochastic time counter with confidence intervals.
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TABLE V TABLE VI

i-method nI ebeg p 106 esup p 106 cbeg p 106 cend p 106 k1 k2 nI ebeg p 106 esup p 106 cbeg p 106 cend p 106

0. 0. 1 83 129 196 2401 1 140 308 554 706
1 2 97 224 317 697 0. 0. 2 117 157 193 239

0. 0. 4 21 143 193 2391 4 52 361 156 701
1 8 27 313 78 699 0. 0. 8 8 113 189 239

0. 0. 16 45 81 181 2411 16 14 248 38 699
1 32 7 243 19 694 0. 0. 32 40 119 162 237

0. 0. 1024 13 131 16 2361 1024 0 261 0 695
2 1 0 572 0 698 1. 5. 1 25 44 197 82

1. 5. 1024 1 27 16 77

Var j (n)(t) 5 O(n21).
The numerical results are given in Table IV. The supre-

mum over the time interval [0, 1] of the error (4.7) isSecond, there is a reduction in the variance of the estima-
tor for the functional F« , for appropriate parameters k1 denoted by edet and esto for the time counters (3.13) and

(3.14), respectively. The statistical error bound (4.11) atand k2 . The statistical error bound c« decreases from about
134 for k2 5 1 to about 67 for k2 5 10, i.e., by a factor of the end of the time interval is denoted by cdet and csto ,

respectively.2. This effect is only partly caused by the increase in the
number of particles in the system, which gives a factor of The systematic error behaves roughly like O(n21) (cf.

the corresponding comments in the previous subsection).about Ï3. Another reason is the increased relative number
of particles in the region A« . A more significant variance The errors for both time counters are displayed in Fig. 4 in

a logarithmic scale dependent on n. Note that the randomreduction (especially compared with the standard method)
is achieved when « is smaller (cf. [9] concerning the case deviations from a linear behavior are within the confidence

intervals, as Fig. 5 shows.« 5 0.0001).

4.3. Time Counter 4.4. Initial Approximation

Here we study the influence of the approximation of theHere we study the influence of the choice of the time
counter on the behavior of the system. To this end, we initial value on the behavior of the system. The stochastic

time counter (3.14) is used. The initial number of particlescalculate the first moment (4.2) with the standard method
(k1 5 0, k2 5 0) and both the deterministic time counter is n 5 1024 and the number of repetitions is N 5 10,000.

The behavior of the statistical error bound (4.11) is studied(3.13) and the stochastic time counter (3.14). The initial
distribution f0(v) is approximated according to (3.5). for different values of nI (cf. (3.6)).

FIG. 6. Statistical error bounds for the first moment (4.2).
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FIG. 7. Statistical error bounds for the functional (4.3).

First we calculate the first moment (4.2) with the stan- tical error bound for both methods. The solid lines repre-
sent the results for k1 5 0, k2 5 0, while the dashed linesdard method (k1 5 k2 5 0). The numerical results are

given in Table V. Here ebeg denotes the error (4.7) at correspond to k1 5 1, k2 5 5.
The approximation of the initial function correspondingt 5 0, esup is the supremum of the error over the time

interval [0, 1], while cbeg and cend denote the statistical error to nI 5 1024 is much better if we compute the solution for
only a short time. However, again the asymptotic behaviorbound at t 5 0 and t 5 1, respectively. Either pseudo-

random numbers (i-method 5 1) or a low discrepancy of both methods does not depend on the approximation
of the initial distribution.sequence (i-method 5 2) were used in (3.6).

The time dependent behavior of the statistical error
bound is shown in Fig. 6. The solid line in this figure 5. CONCLUSIONS
represents the values for nI 5 1. The dashed line represents
the results for nI 5 2 and the dotted line for the low We studied a stochastic weighted particle method based

on a generalized mechanism of modelling collisions be-discrepancy sequence. The lines for nI 5 4, 8, ... are between
the dashed and the dotted lines and we decided not to plot tween particles.

The main feature of the new method is the presence ofthem in order not to overload the figure. The line for
nI 5 1024 coincides with the line for the low discrepancy certain control parameters giving the opportunity to adapt

the behavior of the particle system to specific numericalsequence.
Figure 6 shows that the reduction of the statistical error purposes. It was shown that the relative number of particles

with prescribed velocities may be artificially increased,bound and, correspondingly, of the variance, which can be
achieved by a better approximation of the initial function while other macroscopic quantities like moments are still

computed correctly.f0(u), remains remarkable for some time after the start of
the computations. But if we are interested in computing The computations were performed for a model kinetic

equation, for which the exact solution is known, since inthe steady-state solution of the problem then we will obtain
nearly the same quality of the stochastic solution, even if this case it was possible to separate various numerical ef-

fects. However, the results indicate how to proceed in thewe do not care so much about the approximation of the
initial function. case of more realistic kinetic equations, like the spatially

inhomogeneous Boltzmann equation.Next we calculate the functional (4.3) using the method
with the parameters k1 5 k2 5 0 and k1 5 1, k2 5 5. The In some cells of the physical space, one may define ap-

propriate sets of velocities directed into regions, whereresults are contained in Table VI. As before, ebeg , esup

denote the systematic error at t 5 0 and the supremum macroscopic quantities cannot be computed sufficiently
accurately due to a low particle density. During the colli-of the systematic error over the time interval [0, 1], and

cbeg , cend denote the statistical error bound (4.11) at t 5 0 sion simulation step the control parameters of the method
are used to increase the number of particles with prescribedand t 5 1, respectively.

Figure 7 shows the time dependent behavior of the statis- velocities. These particles will finally reach the desired
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